Hard to Crack Research Reveals How Crop Roots Penetrate Hard Soils (Botany)

Scientists have discovered a signal that causes roots to stop growing in hard soils which can be ‘switched off’ to allow them to punch through compacted soil – a discovery that could help plants to grow in even the most damaged soils.

Root Compaction © University of Nottingham

An international research team, led by scientists from the University of Nottingham’s Future Food Beacon and Shanghai Jiao Tong University has discovered how the plant signal ‘ethylene’ causes roots to stop growing in hard soils, but after this signal is disabled, roots are able to push through compacted soil. The research has been published in Science.

Hard (compacted) soils represent a major challenge facing modern agriculture that can reduce crop yields over 50% by reducing root growth, causing significant losses annually. Europe has over 33-million-hectares of soil prone to compaction which represents the highest in the world. Soil compaction triggers a reduction in root penetration and uptake of water and nutrients. Despite its clear importance for agriculture and global food security, the mechanism underpinning root compaction responses has been unclear until now.

Malcolm Bennett © University of Nottingham

Understanding how roots penetrate hard soils has huge implications for agriculture, as this knowledge will be crucial for breeding crops more resilient to soil compaction. Our team’s identification that the plant signal ethylene controls root responses to hard soil opens up new opportunities to select novel compaction resistant crops.Professor Malcolm Bennett, University of Nottingham, School of Biosciences

The research utilised X-ray Computed Tomography scanners available at the Hounsfield Facility at the University of Nottingham to visualise in situ how plant roots responded to compacted soil. Professor Sacha Mooney from the University of Nottingham and Director of the Hounsfield Facility explained: “Prior to this research we assumed that the hardness of the soil prevented roots growing deeper. By using our imaging approach, we were able to see that roots continued growing in very hard soils when the ethylene signal was switched off. The potential for new crops that can now go deeper in soils and capture previously unavailable resources is really exciting!”

The international team involved in this new Science paper includes researchers drawn from nine universities based in Europe, China and USA, integrating expertise spanning plant and soil sciences, bioimaging and mathematics. The team involves several early career researchers including Dr. Bipin Pandey and Dr. Rahul Bhosale who are funded by Royal Society Challenge Grant, BBSRC Discovery Fellowship and University of Nottingham Future Food Beacon awards.

Reference: Bipin K. Pandey, Guoqiang Huang, Rahul Bhosale, Sjon Hartman, Craig J. Sturrock, Lottie Jose, Olivier C. Martin, Michal Karady, Laurentius A. C. J. Voesenek, Karin Ljung, Jonathan P. Lynch, Kathleen M. Brown, William R. Whalley, Sacha J. Mooney, Dabing Zhang, Malcolm J. Bennett, “Plant roots sense soil compaction through restricted ethylene diffusion”, Science  15 Jan 2021: Vol. 371, Issue 6526, pp. 276-280
DOI: 10.1126/science.abf3013 https://science.sciencemag.org/content/371/6526/276/tab-article-info

Provided by University of Nottingham

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s