Ecological Mechanism behind Dredging Revealed to Mitigate Lake Cyanobacterial Blooms (Biology)

Cyanobacterial blooms caused by water eutrophication have become a global environmental problem. Dredging, alternatively known as removal of sediment, has been reported as an effective approach for mitigating cyanobacterial blooms, and plays important roles in enhancing water quality of urban lakes. However, the research on the ecological mechanisms behind dredging is not deep enough. 

Taking Lake Nanhu in Wuhan, China as the research object, associate Prof. WAN Wenjie and Prof. YANG Yuyi, together with colleagues from the Wuhan Botanical Garden, collaborating with Prof. Hans-Peter Grossart from the Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) in Germany, determined bacterioplankton community composition along with water and sediment physicochemical properties before and after dredging.  

They also evaluated environmental adaptation of rare and abundant bacterioplankton to dredging disturbance by using some statistical analysis methods.    

In addition, they also found that stochastic processes dominate community assemblies of both rare and abundant bacterioplankton before and after dredging. Water dissolved oxygen plays decisive roles in adjusting the balance between stochastic and deterministic processes of community assemblies of both rare and abundant bacterioplankton. They have proposed that community assembly can be used a bio-indicator to reflect community function of bacterioplankton.   

The results of this study show that the rare bacterioplankton presents broader environmental breadths and stronger phylogenetic signals than the abundant bacterioplankton before and after dredging. This study first reveals that the rare bacterioplankton exhibits stronger environmental adaptation to dredging disturbance than the abundant bacterioplankton. 

These findings provide new insights for diversity maintenance of rare and abundant bacterioplankton, and may enrich the theoretical basis for the environmental policy of dredging measures to mitigate cyanobacterial blooms. 

The research was funded by the National Natural Science Foundation of China and the German Science Foundation. The findings of this research have been published in Water Research with the title of “Stronger environmental adaptation of rare rather than abundant bacterioplankton in response to dredging in eutrophic Lake Nanhu (Wuhan, China).” 

Featured image: Rare bacterioplankton exhibits broader environmental breadth and stronger phylogenetic signal than abundant bacterioplankton before and after dredging, while abundant bacterioplankton shows higher functional redundancy than rare bacterioplankton before and after dredging. Water dissolved oxygen shows decisive role in balancing stochasticity and determinism of community assembly, indicating distinct changes in stochasticity with higher dissolved oxygen content (Image by WBG)


Reference: Wenjie Wan, Hans-Peter Grossart, Donglan He, Wenke Yuan, Yuyi Yang, Stronger environmental adaptation of rare rather than abundant bacterioplankton in response to dredging in eutrophic Lake Nanhu (Wuhan, China), Water Research, Volume 190, 2021, 116751, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2020.116751. (http://www.sciencedirect.com/science/article/pii/S0043135420312847)


Provided by Chinese Academy of Sciences

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s