Changing The Connection Between The Hemispheres Affects Speech Perception (Neuroscience)

When we listen to speech sounds, the information that enters our left and right ear is not exactly the same. This may be because acoustic information reaches one ear before the other, or because the sound is perceived as louder by one of the ears. Information about speech sounds also reaches different parts of our brain, and the two hemispheres are specialised in processing different types of acoustic information. But how does the brain integrate auditory information from different areas?

To investigate this question, lead researcher Basil Preisig from the University of Zurich collaborated with an international team of scientists. In an earlier study, the team discovered that the brain integrates information about speech sounds by ‘balancing’ the rhythm of gamma waves across the hemispheres–a process called ‘oscillatory synchronisation’. Preisig and his colleagues also found that they could influence the integration of speech sounds by changing the balancing process between the hemispheres. However, it was still unclear where in the brain this process occurred.

Did you hear ‘ga’ or ‘da’?

The researchers decided to apply electric brain stimulation (high density transcranial alternating current stimulation or HD-TACS) to 28 healthy volunteers while their brains were being scanned (with fMRI) at the Donders Centre for Cognitive Neuroimaging in Nijmegen. They created a syllable that was somewhere in between ‘ga’ and ‘da’, and played this ambiguous syllable to the right ear of the participants. At the same time, the disambiguating information was played to the left ear. Participants were asked to indicate whether they heard ‘ga’ or ‘da’ by pressing a button. Would changing the connection between the two hemispheres also change the way the participants integrated information played to the left and right ear?

Center: Schematic illustration of the processing pathway underlying binaural integration. Left side: Sound pressure waveform and corresponding sound spectrogram of the third formant (F3) cue presented to the left ear. Top: high F3 supporting a /da/ interpretation, bottom: low F3 supporting a /ga/ interpretation. Right side: Sound pressure waveform and corresponding spectrogram of the ambiguous speech sound presented to the right ear. The red line indicates the transmission from the left ear speech cue (either high or low frequency F3) to the right auditory cortex. The blue line indicates the transmission of the ambiguous stimulus from the right ear to the contralateral auditory cortex. HG=Heschl’s Gyrus. The black line illustrates the interhemispheric connection between the auditory cortices via the corpus callosum. © Basil Preisig

The scientists disrupted the ‘balance’ of gamma waves between the two hemispheres, which in turn affected what the participants reported to hear (‘ga’ or ‘da’).

Phantom perception

“This is the first demonstration in the auditory domain that interhemispheric connectivity is important for the integration of speech sound information”, says Preisig. “This work paves the way for investigating other sensory modalities and more complex auditory stimulation”. “These results give us valuable insights into how the brain’s hemispheres are coordinated, and how we may use experimental techniques to manipulate this” adds senior author Alexis-Hervais Adelman.

The findings, to be published in PNAS, may also have clinical implications. “We know that disturbances of interhemispheric connectivity occur in auditory ‘phantom’ perceptions, such as tinnitus and auditory verbal hallucinations”, Preisig explains. “Therefore, stimulating the two hemispheres with (HD-)TACS may offer therapeutic benefits. I will follow up on this research by applying TACS in patients with hearing loss and tinnitus, to improve our understanding of neural attention control and to enhance speech comprehension for this group.”

Featured image: Top: Stimulation electrodes were centered over CP6 (right hemisphere) and CP5 (left hemisphere) (41). Middle: The interhemispheric phase synchrony was manipulated using 40Hz TACS with an interhemispheric phase lag of 0° (TACS 0°) or 180° (dotted line, TACS 180°). The colors represent the polarity (positive = red; negative = blue) of the current for the time stamp highlighted by the dotted line. Bottom: Simulation of the electric field strength induced by bi-hemispheric TACS in a template brain. RH: Right hemisphere; LH: Left hemisphere © Basil Preisig


Reference: Basil C. Preisig, Lars Riecke, Matthias J. Sjerps, Anne Kösem, Benjamin R. Kop, Bob Bramson, Peter Hagoort, Alexis Hervais-Adelman, “Selective modulation of interhemispheric connectivity by transcranial alternating current stimulation influences binaural integration”, Proceedings of the National Academy of Sciences Feb 2021, 118 (7) e2015488118; DOI: 10.1073/pnas.2015488118


Provided by Max Planck Institute for Psycholinguistics

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s