Scientists Reveal New Mechanism of Xenogeneic Silencing in Bacteria (Biology)

Lateral gene transfer (LGT) plays a prominent role in the genome evolution and environmental adaptation of prokaryotes.

Xenogeneic silencing proteins can selectively silence the newly acquired DNA molecules to protect cells from the detrimental effects of LGT genes. H-NS, a nucleoid-associated DNA-binding protein, is an important xenogeneic silencer.  

Recently, Dr. LIU Xiaoxiao and other researchers in Dr. WANG Xiaoxue’s group from the South China Sea Institute of Oceanology (SCSIO) of the Chinese Academy of Sciences found a key process of xenogeneic silencing by studying Shewanella. The silencing of prophage relied on a temperature-dependent posttranslational modification of the host H-NS in S. oneidensis.

This work was published in Nucleic Acids Research on March 8. It is the first to show that posttranslational modification of H-NS can function as a regulatory switch to regulate the prophage activity in host genomes.  

Researchers from WANG’s group showed that H-NS “silenced” the prophage by recognizing the excisionase of the prophage. At room temperature, most of the H-NS protein in the cell was phosphorylated. Phosphorylated H-NS could silence the expression of cytotoxic genes on the prophage.

However, low temperature promoted the dephosphorylation of H-NS and changed the binding of H-NS to DNA, which relieved these genes expression. By this way, the H-NS silenced the specific prophage and helped Shewanella to adapt to the low temperature environment.  

Specifically, phosphorylation of H-NS at Ser42 was critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepressed the promoter activity of these genes/operons to enable their expression at cold temperatures. 

The results of the study illustrate a new way of decision-making for xenogeneic silencing in response to temperature shifts in bacteria and provide new insights for our understanding of how bacteria silence and activate the LGT genes in response to environmental changes.  

Featured image: A proposed mechanism of xenogeneic silencing by H-NS (Image by LIU Xiaoxiao, SCSIO)


Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella

Provided by Chinese Academy of Sciences

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s