Scientists Unveil Mechanisms of Metal-insulator Transitions in Oxide V2O3 (Physics)

As an archetypical correlated oxide which possesses rich metal-insulator transitions, V2Ohas been extensively studied. The paramagnetic metallic (PM) phase can evolve into a paramagnetic insulating (PI) phase or an antiferromagnetic insulating (AFI) phase. However, it is still controversial that the PM-PI transition is caused by electron correlation/trigonal distortion or Cr-doping induced local structure distortion/disorder. In addition, the basic physics behind PM phase and PM-AFI transition remains unclear.

Recently, researchers led by Prof. ZHU Xuebin from the Institute of Solid State Physics of the Hefei Institutes of Physical Science (HFIPS) unveiled the mechanisms of metal-insulators in V2O3 from the viewpoint of trigonal distortion. The research, which was published in Physical Review B, formed a new basis for elucidating the leading source of PM-PI transition and understanding the PM phase and PM-AFI transition.

“We used substrate temperature during deposition as the only tunable parameter,” said HU Ling, who conducted the research, “due to the large differences of lattice and thermal expansion coefficient between V2O3 and Al2O3.”

To their excitement, the PM-PI transition was successfully reproduced in pure V2O3 thin films through enhancing trigonal distortion.

“We studied the electrical transport properties and Raman spectra,” said HU, “and found that in-plane tensile strain in film and Cr doping in V2O3 single crystal played the same role in triggering PM-PI transition.”

On one hand, this result provided key experimental evidence that the enhancement of trigonal distortion would be the leading source for the appearance of the PI phase and PM-PI transition in (V1-xCrx)2O3, whereas the structural inhomogeneity induced by Cr doping contributes to the higher resistivity of both PM and PI phases. On the other hand, the a1g orbital occupation gauged by the A1g phonon mode in the PM phase strongly varies with the trigonal distortion, which determined the PM-AFI transition characteristics.

The team concluded that the PM phase cannot be taken for granted to exhibit identical orbital occupations.

This research revealed that the strain in the films would modulate trigonal distortion in a different way from chemical doping and hydrostatic pressure in V2O3 single crystals.

This work was supported by the National Key R&D Program of China and National Natural Science Foundation of China.

Featured image: Temperature-dependent resistivity of the V2O3 thin films with different c/a ratios (Image by HU Ling)

Reference: L. Hu, C. Xie, S. J. Zhu, M. Zhu, R. H. Wei, X. W. Tang, W. J. Lu, W. H. Song, J. M. Dai, R. R. Zhang, C. J. Zhang, X. B. Zhu, and Y. P. Sun, “Unveiling the mechanisms of metal-insulator transitions in V2O3: The role of trigonal distortion”, Phys. Rev. B 103, 085119 – Published 12 February 2021.

Provided by Chinese Academy of Sciences

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s