Novel Approach to Precisely Control Gas-liquid Taylor Flow Pattern for Continuous Flow Chemistry

Microreactor exhibits great potential for intensified synthesis of advanced materials and chemicals in continuous flow mode, for its various advantages such as excellent heat and mass transfer efficiency, high controllability, easy scale-up, etc. Among numerous flow patterns, gas-liquid Taylor Flow has been proven as an ideal flow regime to enhance chemical reactions. However, the method to precisely control the Taylor flow pattern is still lacking. 

Motivated by such a challenge, a research team led by Prof. TANG Zhiyong and Associate Prof. ZHANG Jie at the Shanghai Advanced Research Institute (SARI) of the Chinese Academy of Sciences (CAS) reported a novel approach of adding pulsation field to precisely regulate the gas-liquid Taylor Flow. Results were published in Chemical Engineering Journal

In this research, the research team used a simple valve arrangement to introduce the pulsation filed, thus producing periodic acceleration and deceleration motion of liquid slugs.

Space-time distribution of gas fraction in bubble formation process (Image by SARI)

By combing visual flow experiments with computational fluid dynamics (CFD) simulation, the temporal-spatial migration of the Taylor flow pattern under pulsating gas intake conditions was investigated. A high-speed camera was used to track the trajectory of gas-liquid interface by the Lagrangian method, while the numerical simulation is used to acquire the flow field distribution at different moments using the Euler method.

Meanwhile, the involved forces during bubble formation and the characteristics of bubble length and velocity under pulsation were analyzed in detail.

(a) Forces versus pulse frequency f at the T-junction, (b) Bubble velocities at downstream (Image by SARI) 

Through studying the temporal-spatial migration of the pattern, the researchers found that the pulsation can increase the power of inertial force on the Taylor flow pattern. Moreover, the pattern can be destroyed when the pulsation energy exceeds a certain value. 

This work provides a new route to regulate precisely the gas-liquid Taylor flow, and will contribute to future applications of this technique to intensify various gas-liquid reactions in continuous flow. 

This work was supported by the Youth Innovation Promotion Association of CAS, the STS Program of CAS and the Frontier Scientific Research Project funded by Shell.  

Featured image: Regulation of Gas-Liquid Taylor Flow by Pulsating Gas Intake in Micro-channel (Image by SARI)

Reference: Yaheng Zhang, Jie Zhang, Zhiyong Tang, Qing Wu, Regulation of gas-liquid Taylor flow by pulsating gas intake in micro-channel, Chemical Engineering Journal, Volume 417, 2021, 129055, ISSN 1385-8947, (

Provided by Chinese Academy of Sciences

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s