Novel Heterostructure Nanosheet Boosts Efficiency of Lean-electrolyte Li-S Batteries (Chemistry)

The lithium sulfur (Li-S) battery is promising for next-generation energy storage technologies. However, lithium polysulfide shuttling, sluggish redox kinetics, and uncontrollable lithium dendrite growth limit the cycling stability.

A research group led by Prof. WU Zhongshuai from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences developed niobium (V)-based heterostructure nanosheet for polysulfides-suppressed sulfur cathodes and dendrite-free lithium anodes in long-cycling and lean-electrolyte Li-S batteries.

This study was published in Advanced Functional Materials on April 28.

“We developed a twinborn holey Nb4N5-Nb2O5 heterostructure, serving as dual-functional host for both redox-kinetics-accelerated sulfur cathode and dendrite-inhibited lithium anode simultaneously,” said Prof. WU.

Polysulfide-shutting was alleviated due to the accelerative polysulfides anchoring-diffusion-converting efficiency of Nb4N5-Nb2O5. Meanwhile, the researchers applied lithiophilic nature of holey Nb4N5-Nb2O5 as an ion-redistributor for homogeneous Li-ion deposition.

The Li-S full battery presented a high areal capacity of 5.0 mAh cm-2 at sulfur loading of 6.9 mg cm-2, corresponding to negative to positive capacity ratio of 2.4:1 and electrolyte to sulfur ratio of 5.1 μL mg-1.

This work paves a new avenue for boosting high-performance Li-S batteries toward practical applications.

Featured image: Schematic of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries (Image by SHI Haodong) 


Reference: Shi, H. D., Qin, J. Q., Lu, P. F., Dong, C., He, J., X. J, , Das, P., Wang, J. M., Zhang, L. Z., Wu, Z.-S., Interfacial Engineering of Bifunctional Niobium (V)-Based Heterostructure Nanosheet Toward High Efficiency Lean-Electrolyte Lithium–Sulfur Full Batteries. Adv. Funct. Mater. 2021, 2102314. https://doi.org/10.1002/adfm.202102314


Provided by Chinese Academy of Sciences

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s