Scientists Develop Integrated Electrodes for High-energy-density Flexible Supercapacitors (Chemistry)

Recently, a research team led by Prof. ZHAO Bangchuan from the Institute of Solid Materials of the Hefei Institutes of Physical Science (HFIPS) synthesized 3D porous honeycomb-like CoN-Ni3N/N-C nanosheets and vanadium nitride (VN) nanobelt arrays via in-situ growth method, respectively, and constructed a high-energy-density flexible supercapacitor device. The result has been published in Advanced Functional Materials.

Transition metal nitrides (TMNs) are potential electrode materials for high-performance energy storage devices, but the structural instability severely hinders their application. Therefore it is urgent to construct advanced cathode materials for flexible, wearable, long-life and high-energy-density energy storage devices.

In this research, scientists designed and fabricated an integrated cathode with 3D porous honeycomb-like CoN-Ni3N/N-C nanosheets, which were grown on flexible carbon cloth (CC) via a mild solvothermal method after post-nitrogenizing treatment.

Further experiments proved that the intrinsic conductivity was enhanced, and concentration of the active sites was increased. It gives advantage to the optimized CoN-Ni3N/N-C/CC, which can be used as an integrated electrode for the supercapacitor to achieves remarkable electrochemical performance.

This supercapacitor delivers an excellent energy density of 106 μWh cm2 with maximum power density of 40 mW cm2, displaying an outstanding cycle stability.

This work provides a viable strategy to construct high-energy flexible wearable electronics in next-generation electrochemical energy storage field.

Figure 1. Schematic diagram of the formation process of CoN-Ni3N/N-C/CC, VN/CC, and the assembly of the flexible quasi-solid-state asymmetric supercapacitor device. (Image by LI Kunzhen)

Featured image: SEM images of (a-c) Co-Ni LDH/CC, (d-f) CoN-Ni3N/N-C/CC, and (g-i)VN/CC at different magnification. (Image by LI Kunzhen)


Reference: Li, K., Zhao, B., Zhang, H., Lv, H., Bai, J., Ma, H., Wang, P., Li, W., Si, J., Zhu, X., Sun, Y., 3D Porous Honeycomb-Like CoN-Ni3N/N-C Nanosheets Integrated Electrode for High-Energy-Density Flexible Supercapacitor. Adv. Funct. Mater. 2021, 2103073. https://doi.org/10.1002/adfm.202103073


Provided by Chinese Academy of Sciences

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s