New Viable Ways Of Storing Information For Quantum Technologies? (Quantum)

Quantum information could be the source of the next technological revolution. By analogy with the bit in classical computing, the qubit is the basic element of quantum computing. But demonstrating the existence of this information storage unit and using it is still complex and therefore limited. In a study published on August 3, 2021 in Physical Review X , an international research team, composed by Fabio Pistolesi, CNRS researcher and two foreign researchers, succeeded by theoretical calculations to show that it is possible to realize a new type of qubit where information is stored in the oscillation amplitude of a carbon nanotube. 

Indeed, these nanotubes are able to perform a large number of oscillations without fading, which shows their weak interaction with the environment and makes them excellent potential qubits. This property would allow greater reliability in quantum computation. However, a problem persisted in reading and writing the information stored in the first two energy levels of these oscillators. 

Scientists have succeeded in proving that it is possible to read this information by exploiting the coupling between electrons, a negatively charged particle, and the bending mode of these nanotubes. This makes it possible to sufficiently change the spacing between the first energy levels and thus make them accessible independently of the other levels to read the information they contain. It now remains to experimentally verify these promising theoretical predictions.

To find out more: A computer to be reinvented for quantum computing

Featured image: Representation of the bending mode of a nanotube shown here in turquoise blue, and the locations of electrons in red and brown in the tube. © Fabio Pistolesi


Proposal for a Nanomechanical Qubit . F. Pistolesi, AN Cleland and A. Bachtold. Physical Review X , August 3, 2021.

Provided by CNRS

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s