Physicists Observed 3 J/ψ Particles Emerging From A Single Collision Between Two Protons (Physics)

In a first for particle physics, the CMS collaboration has observed three J/ψ particles emerging from a single collision between two protons

It’s a triple treat. By sifting through data from particle collisions at the Large Hadron Collider (LHC), the CMS collaboration has seen not one, not two but three J/ψ particles emerging from a single collision between two protons. In addition to being a first for particle physics, the observation opens a new window into how quarks and gluons are distributed inside the proton.

The J/ψ particle is a special particle. It was the first particle containing a charm quark to be discovered, winning Burton Richter and Samuel Ting a Nobel prize in physics and helping to establish the quark model of composite particles called hadrons.

Experiments including ATLASCMS and LHCb at the LHC have previously seen one or two J/ψ particles coming out of a single particle collision, but never before have they seen the simultaneous production of three J/ψ particles – until the new CMS analysis.

The trick? Analysing the vast amount of high-energy proton–proton collisions collected by the CMS detector during the second run of the LHC, and looking for the transformation of the J/ψ particles into pairs of muons, the heavier cousins of the electrons.

From this analysis, the CMS team identified five instances of single proton–proton collision events in which three J/ψ particles were produced simultaneously. The result has a statistical significance of more than five standard deviations – the threshold used to claim the observation of a particle or process in particle physics.

These three-J/ψ events are very rare. To get an idea, one-J/ψ events and two-J/ψ events are about 3.7 million and 1800 times more common, respectively. “But they are well worth investigating,” says CMS physicist Stefanos Leontsinis, “A larger sample of three-J/ψ events, which the LHC should be able to collect in the future, should allow us to improve our understanding of the internal structure of protons at small scales.”

_____

Read more on the CMS website.

Featured image: A proton–proton collision event with six muons (red lines) produced in the decays of three J/ψ particles. (Image: CMS/CERN)


Provided by CERN

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s