Tag Archives: #beetle

New Beetle Found in Fossil Feces Attributed to Dinosaur Ancestor (Paleontology)

The tiny beetle Triamyxa coprolithica is the first-ever insect to be described from fossil faeces. The animal the researchers have to thank for the excellent preservation was probably the dinosaur ancestor Silesaurus opolensis, which 230 million years ago ingested the small beetle in large numbers.

In a recently published study in Current Biology, vertebrate palaeontologists from Uppsala University and entomologists from National Sun Yat-sen University (Taiwan), Friedrich-Schiller-Universität Jena (Germany), and Universidad de Guadalajara (Mexico) used synchrotron microtomography to 3D-reconstruct the beetles while they were still trapped within the fossilised faecal matter. The coprolite contained abundant beetle body parts, most belonging to the same small species. A few specimens were found nearly complete, with much of the delicate legs and antennae still intact. The well-preserved state of these fossils made it possible to produce a detailed description of the new beetle genus and to compare it with more modern ones. Triamyxa coprolithica represents a previously unknown extinct lineage of the suborder Myxophaga, whose modern representatives are small and live on algae in wet environments.

The tiny beetle Triamyxa coprolithica is the first-ever insect to be described from fossil feces. © Qvarnström et al.

“We were absolutely amazed by the abundance and fantastic preservation of the beetles in the coprolite fragment. In a way, we must really thank Silesaurus, which likely was the animal that helped us accumulating them,” says Martin Qvarnström, researcher at Uppsala University and one of the co-authors of the paper.

Silesaurus opolensis – the probable producer of the coprolite – was a relatively small dinosaur ancestor with an estimated body weight of 15 kilograms that lived in Poland approximately 230 million years ago. In a previous study, the authors assigned coprolites with disarticulated beetle remains to Silesaurus based on the size and shape of the coprolites as well as several anatomical adaptations in the animal. Silesaurus possessed a beak at the tip of its jaws that could have been used to root in the litter and perhaps peck insects off the ground, somewhat like modern birds. But although Silesaurus ingested numerous individuals of Triamyxa coprolithica, the beetle was likely too small to have been the only targeted prey. Instead, Triamyxa likely shared a habitat with larger beetles, which are represented by disarticulated remains in the coprolites, and other prey, which never ended up in the coprolites in a recognisable shape.

The tiny beetle Triamyxa coprolithica is the first-ever insect to be described from fossil feces. © Qvarnström et al.

“I never thought that we would be able to find out what the Triassic precursor of the dinosaurs ate for dinner,” says Grzegorz Niedwiedzki, palaeontologist at Uppsala University and one of the co-authors of the paper.

The preservation of the beetles in the coprolite is similar to specimens from amber, which normally yield the best-preserved insect fossils. Amber, however, was mainly formed during relatively recent geological time. This study shows that coprolites may be valuable for studying early insect evolution and, at the same time, the diet of extinct vertebrates.

The synchrotron scanning was carried out at the European Synchrotron Radiation Facility (ESRF) in Grenoble.

Featured image: The animal the researchers have to thank for the excellent preservation of the beetle Triamyxa coprolithica was was probably the dinosaur ancestor Silesaurus opolensis. © Magorzata Czaja


Provided by Uppsala University

New Beetle Species Discovered And Named After Iconic Sci-fi Heroines (Biology)

Michigan State entomologists have discovered dozens of new beetle species — and named some after iconic sci-fi heroines

The original Star Trek television series took place in a future when space is the final frontier, but humanity hasn’t reached that point quite yet. As researchers like Michigan State University entomologists Sarah Smith and Anthony Cognato are reminding us, there’s still plenty to discover right here on Earth.

Working in Central and South America, the duo discovered more than three dozen species of ambrosia beetles — beetles that eat ambrosia fungus — previously unknown to science. Smith and Cognato described these new species on June 16  in the journal ZooKeys.

Sarah Smith and Anthony Cognato are photographed in front of dense green foliage and misty hilltops in Ecuador in 2015.
MSU entomologists Sarah Smith (left) and Anthony Cognato (right), who are partners in work and life, pose for a photograph during field work in Ecuador in 2015. © MSU

The Spartans also selected an unusual naming theme named in deference to the female beetles who have helped their species survive and thrive by boldly going where they hadn’t before.

Many of the new species are named for iconic female science fiction characters, including Nyota Uhura of “Star Trek”; Kara “Starbuck” Thrace from the 2000s “Battlestar Galactica” TV series; and Katniss Everdeen from “The Hunger Games” books and movies.

“One of our colleagues from London asked if it’s good to name a species after popular characters, if the popularity would backfire and make people think this is frivolous,” said Cognato, director of the Albert. J. Cook Arthropod Research Collection. He’s also an entomology professor with appointments in the College of Agriculture and Natural Resources and the College of Natural Science.

“But overall, our colleagues think it’s a good thing,” Cognato said. “It gives us a chance to talk about taxonomy — the science of classifying organisms — and about diversity.”

Understanding the world’s biodiversity is one of the major drivers of this and related research. Scientists estimate that there are 10 million nonbacterial species in the world and that humans have classified only about 20% of those.

“And some are lost before they’re ever discovered,” said Smith, who is the curator of the A. J. Cook Arthropod Research Collection. When people disrupt native ecosystems with farming and mining, for example, undiscovered species can face extinction before researchers know about them.

A photo of the Coptoborus starbuck, a red-orange beetle with a rough exterior next to a photo of Kara 'Starbuck' Thrace from 'Battlestar Galactica,' played by Katee Sackhoff.
The researchers thought the C. starbuck’s appearance gave it a tough persona, leading them to name it for Kara “Starbuck” Thrace from “Battlestar Galactica,” shown on the right. “Battlestar Galactica” image courtesy of NBC Universal. © MSU

For this project, the team did some of its field work in Peru, where illegal gold miners can be particularly devastating to forests. “They’re turning the forest into a wasteland” Smith said. “It may never recover.”

Working in such threatened areas, Smith and Cognato are helping identify beetle species before it’s too late, as well as characterizing a rich variety of physical traits and behaviors.

To be clear, they did this field work long before the pandemic struck, starting around 2008. But it takes time to perform the thorough investigations required to ensure that a species is indeed distinct from its closely related cousins.

“With South America, it can be really hard to know whether a species is new or not, just because the fauna is so poorly studied,” Smith said.

With the stay-at-home orders in effect, she and Cognato had time to focus on projects that had been simmering on the backburner, such as this one that details ambrosia beetles they had collected belonging to the genus Coptoborus.

A photo of the Coptoborus katniss. This amber-colored beetle's wing covers come to a point, like an arrowhead, reminding the researchers of Katniss Everdeen, shown in a photo below holding a bow and arrow. The character is played by Jennifer Lawrence in the film adaptation of The Hunger Games.
The wing coverings of the C. katniss come to an arrowhead-like point, which reminded the researchers of Katniss Everdeen from “The Hunger Games,” shown below. “The Hunger Games” image courtesy of Lions Gate Entertainment Inc. © MSU

These tiny beetles make their homes by boring into trees. Once inside, they sustain their nests by cultivating fungus that serves as food. There, a mother produces many female offspring and one or two dwarfed males. The main job of those males is to mate with their sisters, creating a new generation of females prepared to disperse and produce a new brood. This all leads to another reason for studying these beetles: they can become pests.

These females arrive at trees ready to bore inside, start a fungus farm and reproduce. Though most prefer to nest in dead or dying parts of trees, some can attack fully healthy trees that are ecologically and economically important. For example, there are species within the genus known to attack balsa trees in Ecuador, the world’s leading exporter of balsa wood.

And if tree-dwelling beetles find their way into nonnative habitats, they can pose large threats to trees that have no natural defenses against the insects. Michiganders are all too familiar with the emerald ash borer, which has claimed millions of ash trees in the state. Another nonnative species of fungus-farming beetle devastated redbay laurels and avocado trees in the Southern U.S.


By identifying species abroad, in their native habitats, researchers including Smith and Cognato are helping the U.S. better prepare for if and when a new pest shows up here. And, historically speaking, Coptoborus beetles are hardy travelers.

Their ancestors originated about 20 million years ago, likely in Southeast Asia, before emigrating and making homes across much of the tropics.

A photo of the Coptoborus uhura, so named because its color is reminiscent of the red uniform worn by Lt. Uhura from the original Star Trek television series, who is shown in a photo below, played by Nichelle Nichols.
The C. uhura’s reddish hue reminded the researchers of the uniform worn by Lt. Uhura in the original “Star Trek” television series, shown below. “Star Trek” image courtesy of CBS Studios Inc. © MSU

“That’s one of the reasons we chose to name them after female sci-fi characters. Not to anthropomorphize too much, but you have these adventurous females that were blown off their log or had their wood-encased home thrown into the ocean by a mudslide,” Cognato said. If these mated females made it to a new land, they could start a new population, allowing the species to proliferate.

“Along the way, there were so many ways to die, but they ended up colonizing an entire continent.”

Fast forward to now and there are thousands of ambrosia beetle species, including more than 70 of the Coptoborus genus — and counting. In christening the new beetles, Smith and Cognato got some inspiration by finding similarities between the beetle and its namesake.

For instance, the C. uhura was given its name because its reddish color, reminiscent of the uniform worn by Nichelle Nichols’s Uhura character in the original “Star Trek” TV series.

 A photo shows the Coptoborus ripley, which is smoother and a deeper brown than some of its relatives. Its glabrous look led MSU's researchers to name it after Ellen Ripley — played by Sigourney Weaver and shown in a photo on the right — who had a shaved head Alien 3
The C. ripley is glabrous, which means hairless, reminding the researchers of Ellen Ripley and her shaved head in “Alien 3,” shown on the right. “Alien 3” image courtesy of Twentieth Century Fox. © MSU

And Sigourney Weaver’s Ellen Ripley character in the “Alien” film franchise had a shaved head in the movie “Alien 3.” One of the beetles, now named C. ripley, was also glabrous, or without hair.

Other names were selected because the duo just liked the characters and found them inspiring. For example, the C. scully beetle was named after Dana Scully, Gillian Anderson’s character on “The X-Files.”

The character is also behind what’s known as the “Scully Effect.” By showing a successful female scientist on TV, the show helped raise awareness of science, technology, engineering and mathematics — or STEM — professions among young women.

In their paper, Smith and Cognato wrote, “We believe in the ‘Scully Effect’ and hope future female scientists, real and fictional, continue to inspire children and young adults to pursue STEM careers.”

Smith and Cognato also took the opportunity to name some beetles in honor of real-life people who have made an impact on their work and their lives.

For example, the C. erwini, is named after a renowned entomologist and friend Terry Erwin, who passed away in 2020. Erwin helped popularize a technique called canopy fogging to collect beetle specimens living in treetops.

“Without his dedication to canopy fogging, this species and most of those described in this publication may never have been discovered,” Smith and Cognato wrote in their study, which is part of a special issue in memory of Erwin, who was also editor-in-chief of ZooKeys.

A photograph shows the Coptoborus bettysmithae, which is round, amber colored and dotted with little spines.
Some of the beetles were named for real-life inspirations, like the C. bettysmithae, named for Sarah Smith’s grandmother, Catherine “Betty” Smith. © MSU

Also, the C. bettysmithae is named after Smith’s grandmother, Catherine “Betty” Smith. Sarah remembers Betty’s incredible strength in battling cancer and her help fostering her granddaughter’s scientific interest.

“My grandmother supported me a lot with entomology,” Smith said. “I used to spend many weekends with her, and she’d take me out to catch dragonflies.”

Now, she and Cognato are out catching and characterizing insects that are new to science. In doing so, they’re helping protect native ecosystems, painting a more complete picture of the planet’s bountiful biodiversity and even drawing some attention to the power of naming and classifying things.

“Taxonomy was probably one of the first sciences of humans. You can find evidence of it throughout history and across cultures,” Cognato said.

This naming likely started so humans could easily share information about which plants were safe to eat and which animals were dangerous. This is still valuable information today, but naming has evolved to help us appreciate even more dimensions of life on Earth.

Think about being a kid in a park or backyard, Cognato said, and the innate desire to know and name the animals there, say, robins or squirrels. Classification builds connection.

“It helps us communicate and it helps us live better,” Cognato said. “It helps us understand the world and biodiversity.”


Provided by Michigan State University

NYUAD Researchers Shed New Light on Mysteries Behind the Light Emission of Fireflies (Biology)

Fast facts:

  • Bioluminescence is an energy-conserving process of natural production of cold light that many lower organisms use for communication, capturing prey, or mating.
  • This wondrous phenomenon has long fascinated scientists and the public, but many details of the chemical reactions used to produce light remain unclear. For example, it remains uncertain why various beetle species can emit different colors of light, despite using very similar light-producing enzymes.
  • Understanding the chemical reactions responsible for bioluminescence could lead to the development of new bioanalytical tools, such as those for early discovery of cancer and diagnostics of other diseases.

Abu Dhabi, UAE, December 10, 2020: A team of researchers from the NYU Abu Dhabi’s (NYUAD) Smart Materials Lab (SML) led by Professor of Chemistry Panče Naumov has conducted a thorough review of the scientific literature surrounding the natural production of light, called bioluminescence, and developed conclusions that will help others in the field direct their research to uncover the mysteries behind this fascinating natural phenomenon.

A female beetle glowing green-yellow light. © NYU Abu Dhabi

In the new study The Elusive Relationship Between Structure and Color Emission in Beetle Luciferases, which is featured on the cover of the journal Nature Reviews Chemistry, Naumov and colleagues provide the most comprehensive critical overview of the field of the bioluminescence of beetles, including fireflies, to date.

The NYUAD researchers, including the Naumov group’s post-doctoral associates César Carrasco-López and Stefan Schramm, and undergraduate student Nathan M. Lui, identify the intricate structural factors that govern what color light is emitted by wild-type and mutant luciferases, the enzymes that generate light. They also demonstrate that it is possible to build a library of bioluminescent enzymes in the future, which will enable researchers to control the color and intensity of light emission by engineering luciferases at will.

“Learning from nature will provide us with tools to engineer luciferases that can emit colors within a large range of energies,” said Naumov. “This will eventually help us expand the range of application of these and similar enzymes for some exciting applications in biology and medicine, including early diagnosis and prevention of diseases.”

A female beetle glowing green-yellow light. © NYU Abu Dhabi

Throughout human’s history, bioluminescence has been an inspiration to scientists, artists, and laypersons. Glowing fungi or ostracods have been used by tribes and soldiers as lanterns to guide their way through jungles without the need of electricity, and fireflies were used by miners as safety lights.

The Nobel Prize in Chemistry in 2008 was awarded for the discovery of the green fluorescent protein, a bioluminescent protein found in the jellyfish Aequorea victoria. Today, bioluminescence is the basis for a great number of bioanalytical methods, such as cell imaging, cancer research, and control of food contamination, and a way to efficiently convert the energy stored in chemical bonds into light that can be easily detected. For example, bioluminescence of some bioluminescent bacterial strains is used to monitor water toxicity and contamination. The fluorescent proteins are genetically inserted into cells and animals to analyze important aspects of dynamics of some diseases.

The latest research from the NYUAD’s Naumov team is poised to solve some of the mysteries surrounding the chemistry of bioluminescence and to bring this research closer to applications.

Reference: Carrasco-López, C., Lui, N.M., Schramm, S. et al. The elusive relationship between structure and colour emission in beetle luciferases. Nat Rev Chem (2020). https://doi.org/10.1038/s41570-020-00238-1

Provided by New York University

About NYU Abu Dhabi

NYU Abu Dhabi is the first comprehensive liberal arts and science campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly-selective liberal arts, engineering and science curriculum with a world center for advanced research and scholarship enabling its students to succeed in an increasingly interdependent world and advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from more than 115 nations and speak over 115 languages. Together, NYU’s campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.