Tag Archives: #drones

Radar Tracking Uncovers Mystery Of Where Honeybee Drones Have Sex (Biology)

Scientists from Queen Mary University of London and Rothamsted Research have used radar technology to track male honeybees, called drones, and reveal the secrets of their mating behaviours.

The study suggests that male bees swarm together in specific aerial locations to find and attempt to mate with queens. The researchers found that drones also move between different congregation areas during a single flight.

Drones have one main purpose in life, to mate with queens in mid-air. Beekeepers and some scientists have long believed that drones gather in huge numbers of up to 10,000 in locations known as ‘drone congregation areas’. Previous research has used pheromone lures to attract drones, raising concerns that these lures could have inadvertently caused these congregations. This new study is the first ever attempt to track the flight paths of individual drones and observe them in the absence of lures.

Similar mating sites, in which large numbers of males gather, have been observed in other animals but this is the first time males have been observed to move between multiple locations, hinting at the discovery of a new type of animal mating system.

The research is published today in the journal iScience and coincides with the UN designated World Bee Day (20 May), which aims to raise awareness of the importance of pollinators, the threats they face and their contribution to sustainable development.

To track the flight paths of drones, researchers attached a small antenna-like electronic device, known as a transponder, to the back of individual honeybees. When the transponder receives a radar signal from the transmitter, it absorbs its energy and converts it into a higher frequency signal, which is then detected by the radar antenna. As the transponders signal is twice the frequency of the initial signal, it is easily identifiable and cannot be confused with reflections of the original signal from objects in the surrounding environment, such as trees of buildings.

Using this system the researchers are able to track the bee’s position relative to the radar every 3 seconds with an accuracy of around 2m. The team then used the positions of known landmarks within the outdoor experimental field site to determine the true GPS position of each bee.

The scientists found that drones alternated between periods of straight and convoluted, looping flight patterns within a single flight. On further investigation they showed that phases of looping flight were associated with four distinct aerial locations where drones congregated and these specific areas were consistent over a two year period.

The researchers propose that drone congregation areas could function like ‘leks’, mating systems in which large numbers of males gather solely in an attempt to mate. Lek systems are most well known in vertebrates, like deer and grouse, and males are typically faithful to a single lek location.

Dr Joe Woodgate, a Postdoctoral Researcher at Queen Mary and lead author of the study, said: “By using harmonic radar technology to track the bees, we found that individual flight paths show a clear change of behaviour from straight flight to looping flight. Periods of looping flight were clustered in particular locations and repeatable over two years, confirming that stable drone congregation areas, similar to ‘leks’ in other species, do exist.”

“We show that drones frequently visited more than one congregation area on a single flight. This is the first evidence for males of any species routinely moving between lek-like congregations and may represent a new form of lek-like mating system in honeybees.”

Interestingly, the study highlights similarities between the behaviour of drones within these congregation areas to swarms of midges or mosquitos. The researchers observed that when drones are making looping flight in one of these areas, the further they go from the centre, the harder they accelerate back towards it. This creates an apparent force, drawing bees toward the centre and leading to a stable, coherent swarm despite individual drones only spending a short time at each location.

The researchers still don’t understand how the drones find these congregation areas in the first place. Drones are born in Summer and their average lifespan is only around 20 days, so new generations can’t find these areas by following older drones. “Our findings suggest drones locate congregation areas as early as their second ever flight, without apparent extensive search. This implies that they must be able to get the information required to guide them to a congregation from observing the landscape close to their hive. In the future, we will look at how they accomplish this feat,” said Professor Lars Chittka, Professor of Sensory and Behavioural Ecology at Queen Mary and supervisor of the project.

The work was supported by grants from the European Research Council and Engineering and Physical Sciences Research Council (EPSRC).

Dr Joe Woodgate, the lead researcher for the study is also part of the EPSRC-funded ‘Brains on Board’ programme that aims to create robots with the navigational abilities of bees. He added: “We believe that bee-inspired robotics will play a role in improving robotics and artificial intelligence in the future. Understanding how bees select and find distant goals based on their explorations of their surroundings will be important for this.”

Research publication: ‘Harmonic radar tracking reveals that honeybee drones navigate between multiple aerial leks’ Joseph L. Woodgate, James C. Makinson, Natacha Rossi, Ka S. Lim, Andrew M. Reynolds, Christopher J. Rawlings, Lars Chittka, iScience, DOI: https://doi.org/10.1016/j.isci.2021.102499.

Provided by Queensmary University of London

How Hummingbirds Hum? (Engineering)

New measurement technique unravels what gives hummingbird wings their characteristic sound

The hummingbird is named after its pleasant humming sound when it hovers in front of flowers to feed. But only now has it become clear how the wing generates the hummingbird’s namesake sound when it is beating rapidly at 40 beats per second. Researchers from Eindhoven University of Technology, Sorama, a TU/e spin-off company, and Stanford University meticulously observed hummingbirds using 12 high-speed cameras, 6 pressure plates and 2176 microphones. They discovered that the soft and complex feathered wings of hummingbirds generate sound in a fashion similar to how the simpler wings of insect do. The new insights could help make devices like fans and drones quieter.

The team of engineers succeeded in measuring the precise origin of the sound generated by the flapping wings of a flying animal for the first time. The hummingbird’s hum originates from the pressure difference between the topside and underside of the wings, which changes both in magnitude and orientation as the wings flap back and forth. These pressure differences over the wing are essential, because they furnish the net aerodynamic force that enables the hummingbird bird to liftoff and hover.

Unlike other species of birds, a hummingbird wing generates a strong upward aerodynamic force during both the downward and upward wing stroke, so twice per wingbeat. Whereas both pressure differences due to the lift and drag force acting on the wing contribute, it turns out that the upward lifting pressure difference is the primary source of the hum.

The difference between whining, humming, buzzing and wooshing

Professor David Lentink of Stanford University: “This is the reason why birds and insects make different sounds. Mosquitoes whine, bees buzz, hummingbirds hum, and larger birds ‘woosh’. Most birds are relatively quiet because they generate most of the lift only once during the wingbeat at the downstroke. Hummingbirds and insects are noisier because they do so twice per wingbeat.”

The researchers combined all measurements in a 3D acoustic model of bird and insect wings. The model not only provides biological insight into how animals generate sound with their flapping wings, it also predicts how the aerodynamic performance of a flapping wing gives the wing sound its volume and timbre. “The distinctive sound of the hummingbird is perceived as pleasant because of the many ‘overtones’ created by the varying aerodynamic forces on the wing. A hummingbird wing is similar to a beautifully tuned instrument,” Lentink explains with a smile.

High-tech sound camera

To arrive at their model, the scientists examined six Anna’s hummingbirds, the most common species around Stanford. One by one, they had the birds drink sugar water from a fake flower in a special flight chamber. Around the chamber, not visible to the bird, cameras, microphones and pressure sensors were set up to precisely record each wingbeat while hovering in front of the flower.

You can’t just go out and buy the equipment needed for this from an electronics store. CEO and researcher Rick Scholte of Sorama, a spin-off of TU Eindhoven: “To make the sound visible and be able to examine it in detail, we used sophisticated sound cameras developed by my company. The optical cameras are connected to a network of 2176 microphones for this purpose. Together they work a bit like a thermal camera that allows you to show a thermal image. We make the sound visible in a ‘heat map’, which enables us to see the 3D sound field in detail.”

New aerodynamic force sensors

To interpret the 3D sound images, it is essential to know what motion the bird’s wing is making at each sound measurement point. For that, Stanford’s twelve high-speed cameras came into play, capturing the exact wing movement frame-by-frame.

Lentink: “But that’s not end of story. We also needed to measure the aerodynamic forces the hummingbird’s wings generates in flight. We had to develop a new instrument for that.” During a follow-up experiment six highly sensitive pressure plates finally managed to record the lift and drag forces generated by the wings as they moved up and down, a first.

The terabytes of data then had to be synchronized. The researchers wanted to know exactly which wing position produced which sound and how this related to the pressure differences. Scholte: “Because light travels so much faster than sound, we had to calibrate each frame separately for both the cameras and the microphones, so that the sound recordings and the images would always correspond exactly.” Because the cameras, microphones and sensors were all in different locations in the room, the researchers also had to correct for that.

Algorithm as a composite artist

Once the wing location, the corresponding sound and the pressure differences are precisely aligned for each video frame, the researchers were confronted with the complexity of interpretating high volume data. The researchers tackled this challenge harnessing artificial intelligence, the research of TU/e PhD student, and co-first author, Patrick Wijnings.

Wijnings: “We developed an algorithm for this that can interpret a 3D acoustic field from the measurements, and this enabled us to determine the most probable sound field of the hummingbird. The solution to this so-called inverse problem resembles what a police facial composite artist does: using a few clues to make the most reliable drawing of the suspect. In this way, you avoid the possibility that a small distortion in the measurements changes the outcome.”

The researchers finally managed to condense all these results in a simple 3D acoustic model, borrowed from the world of airplanes and mathematically adapted to flapping wings. It predicts the sound that flapping wings radiate, not only the hum of the hummingbird, but also the woosh of other birds and bats, the buzzing and whining of insects and even the noise that robots with flapping wings generate.

Making drones quieter

Although it was not the focus of this study, the knowledge gained may also help improve aircraft and drone rotors as well as laptop and vacuum cleaner fans. The new insights and tools can help make engineered devices that generate complex forces like animals do quieter.

This is exactly what Sorama aims to do: “We make sound visible in order to make appliances quieter. Noise pollution is becoming an ever-greater problem. And a decibel meter alone is not going to solve that. You need to know where the sound comes from and how it is produced, in order to be able to eliminate it. That’s what our sound cameras are for. This hummingbird wing research gives us a completely new and very accurate model as a starting point, so we can do our work even better,” concludes Scholte.

This research appears on March 16 in the journal eLife, under the title “How Oscillating Aerodynamic Forces Explain the Timbre of the Hummingbird’s Hum and Other Animals in Flapping Flight.” The experimental and analytical work of this research was conducted by PhD student Patrick Wijnings of TU Eindhoven under the supervision of Rick Scholte of Sorama and Sander Stuijk and Henk Corporaal of TU/e, and PhD student Ben Hightower of Stanford under the supervision of David Lentink of Stanford University with the assistance of four co-authors from the Lentink Lab: Rivers Ingersoll, Diana Chin, Jade Nguyen and Daniel Shorr. This research was financed by NWO Perspectief program ZERO and CAREER AWARD National Science Foundation (NSF).

Featured image: Anna’s hummingbird flying in the experimental setup, drinking sugar water from a fake flower. © Photo: Lentink Lab / Stanford University.

Provided by Eindhoven University of Technology

How to Keep Drones Flying When a Motor Fails? (Engineering / Robotics)

Robotics researchers at the University of Zurich show how onboard cameras can be used to keep damaged quadcopters in the air and flying stably – even without GPS.

When one rotor fails, the drone begins to spin on itself like a ballerina. (Picture: UZH)

As anxious passengers are often reassured, commercial aircrafts can easily continue to fly even if one of the engines stops working. But for drones with four propellers – also known as quadcopters – the failure of one motor is a bigger problem. With only three rotors working, the drone loses stability and inevitably crashes unless an emergency control strategy sets in.

Researchers at the University of Zurich and the Delft University of Technology have now found a solution to this problem: They show that information from onboard cameras can be used to stabilize the drone and keep it flying autonomously after one rotor suddenly gives out.

Spinning like a ballerina

“When one rotor fails, the drone begins to spin on itself like a ballerina,” explains Davide Scaramuzza, head of the Robotics and Perception Group at UZH and of the Rescue Robotics grand challenge at NCCR Robotics, which funded the research. “This high-speed rotational motion causes standard controllers to fail unless the drone has access to very accurate position measurements.” In other words, once it starts spinning, the drone is no longer able to estimate its position in space and eventually crashes.

The algorithms combine the information from the sensors to track the quadrotor’s position in the environment. (Image: UZH)

One way to solve this problem is to provide the drone with a reference position through GPS. But there are many places where GPS signals are unavailable. In their study, the researchers solved this issue for the first time without relying on GPS, instead using visual information from different types of onboard cameras.

Event cameras work well in low light

The researchers equipped their quadcopters with two types of cameras: standard ones, which record images several times per second at a fixed rate, and event cameras, which are based on independent pixels that are only activated when they detect a change in the light that reaches them.

The research team developed algorithms that combine information from the two sensors and use it to track the quadrotor’s position relative to its surroundings. This enables the onboard computer to control the drone as it flies – and spins – with only three rotors. The researchers found that both types of cameras perform well in normal light conditions. “When illumination decreases, however, standard cameras begin to experience motion blur that ultimately disorients the drone and crashes it, whereas event cameras also work well in very low light,” says first author Sihao Sun, a postdoc in Scaramuzza’s lab.

Increased safety to avoid accidents

The problem addressed by this study is a relevant one, because quadcopters are becoming widespread and rotor failure may cause accidents. The researchers believe that this work can improve quadrotor flight safety in all areas where GPS signal is weak or absent.

Reference: Sihao Sun, Giovanni Cioffi, Coen de Visser, Davide Scaramuzza: Autonomous Quadrotor Flight despite Rotor Failure with Onboard Vision Sensors: Frames vs. Events. 5. January 2021, IEEE Robotics and Automation Letter. DOI: 10.1109/LRA.2020.3048875

Provided by ETH Zurich